The Complete
SPECTRUM
ROM

DISASSEMBLY

BY

Dr lan Logan & Dr Frank O’Hara

Transcribed by the following readers of
the comp.sys.sinclair newsgroup:-

J.R. Biesma
Biggo
Dr. J. Bland
Paul E .Collins
Chris Cowley
Dr. Rupert Goodwins
Jonathan G Harston
Marcus Lund
Joe Mackay
Russell Marks
Eduardo Yafez Parareda
Adam Stonehewer
Mark Street
Gerard Sweeney
Geoff Wearmouth
Matthew Westcott
Matthew Wilson
Witchy

Preface

The Sinclair ZX Spectrum is a worthy successor to the ZX 81 which in turn replaced the ZX 80.

The Spectrum has a 16K monitor program. This program has been developed directly from the 4K program
of the ZX 80 although there are now so many new features that the differences outweigh the similarities.

We have both enjoyed producing this book. We have learnt a great deal about the techniques of Z80
machine code programming and now feel that between us we have unravelled the ‘secrets of the Spectrum’.

We would like to thank:
-~ Our families.
-- Alfred Milgrom, our publisher who has been extremely helpful.
- Philip Mitchell whose notes on the cassette format were most informative.

-- Clive Sinclair and his team at Sinclair Research Ltd. who have produced such a ‘challenging’ and
useful machine.

January 1983

lan Logan Lincoln, U.K.
Frank O’Hara London, U.K.

Contents

Preface

Introduction
The DISASSEMBLY

Append

The restart routines and tables

The keyboard routines

The loudspeaker routines

The cassette handling routines

The screen and printer handling routines
The executive routines

BASIC line and command interpretation
Expression evaluation

The arithmetic routines

The floating-point calculator

iX

BASIC programs for the main series
(SIN X, EXP X, LN X & ATN X)

The ‘DRAW’ algorithm

The ‘CIRCLE’ algorithm

Note on small integers and -65536

Index to routines

page

11
15
33
59
84
127
164
190

222
228
228
229

231

Introduction

The 16K monitor program of the Spectrum is a complex Z80 machine code program. Its overall structure is very clear in that it is divided
into three major parts:
a. Input/Output routines
b. BASIC interpreter
c. Expression handling
However these blocks are too large to be managed easily and in this book the monitor program is discussed in ten parts.
Each of these parts will now be ‘outlined’.

The restart routines and tables.

At the start of the monitor program are the various ‘restart’ routines that are called with the single byte ‘RST’ instructions. All of the
restarts are used. For example ‘restart 0008’ is used for the reporting of syntax or run-time errors.

The tables in this part of the monitor program hold the expanded forms of the tokens and the ‘key-codes’.

The keyboard routine.
The keyboard is scanned every 1/50 th. of a second (U.K. model) and the keyboard routine returns the required character code. All of
the keys of the keyboard 'repeat’ if they are held down and the keyboard routine takes this into consideration.

The loudspeaker routines.
The spectrum has a single on-board loudspeaker and a note is produced by repeatedly using the appropriate 'OUT" instruction. In the
controller routine great care has been taken to ensure that the note is held at a given 'pitch' throughout its 'duration’.

The cassette handling routines.

It was a very unfortunate feature of the ZX 81 that so little of the monitor program for that machine was devoted to the cassette
handling.

However in the Spectrum there is an extensive block of code and now the high standard of cassette handling is one of the most
successful features of the machine.

BASIC programs or blocks of data are both dealt with in the same manner of having a 'header' block (seventeen bytes) that is SAVEd
first. This 'header' describes the 'data block' that is SAVEd after it.

One disadvantage of this system is that it is not possible to produce programs with any 'security’ whatsoever.

The screen and printer handling routines.

All of the remaining input/output routines of the Spectrum are 'vectored' through the ‘channel & stream information areas'.

In the standard Spectrum 'input' is only possible from the keyboard but ‘output' can be directed to the printer, the upper part of the T.V.
display or the lower part of the T.V. display.

The major 'input’ routine in this part of the monitor program is the EDITOR that allows the user to enter characters into the lower part of
the T.V. display.

The PRINT-OUT routine is a rather slow routine as the same routine is used for 'all possibilities'. For example, the adding of a single
byte to the 'display area’ involves considering the present status of OVER and INVERSE on every occasion.

The executive routines

In this part of the monitor program are to be found the INITIALISATION procedure and the 'main execution loop' of the BASIC
interpreter.

In the Spectrum the BASIC line returned by the EDITOR is checked for the correctness of its syntax and then saved in the program
area, if it was a line starting with a line number, or 'executed’ otherwise.

This execution can in turn lead to further statements being considered. (Most clearly seen as in the case of - RUN.)

BASIC line and command interpretation.

This part of the monitor program considers a BASIC line as a set of statements and in its turn each statement as starting with a
particular command. For each command there is a ‘command routine' and it is the execution of the machine code in the appropriate
‘command routine' that effects the 'interpretation'.

Expression evaluation

The Spectrum has a most comprehensive expression evaluator allowing for a wide range of variable types, functions and operations.
Once again this part of the monitor is fairly slow as all the possible alternatives have to be considered.

The handling of strings is particularly well managed. All simple strings are managed ‘dynamically' and old copies are 'reclaimed' once
they are redundant. This means that there is no 'garbage collecting’ to be done.

The arithmetic routines

The Spectrum has two forms for numbers. Integer values in the range -65535 to +65535 are in an 'integral’ or 'short' form whilst all other
numbers are in a five byte floating point form.

The present version of the monitor is unfortunately marred by two mistakes in this part.

i. There is a mistake in 'division' whereby the 34th bit of a division is lost.

ii. The value of -65536 is sometimes put in 'short' form and at other times in 'floating-point' and this leads to troubles.

The floating-point calculator

The CALCULATOR of the Spectrum handles numbers and strings and its operations are specified by 'literals'. It can therefore be
considered that there is an internal 'stack operating' language in the CALCULATOR.

This part of the monitor program contains routines for all the mathematical functions. The approximations to SIN X, EXP X, LN X & ATN
X are obtained by developing Chebyshev polynomials and full details are given in the appendix.

Overall the 16K monitor program offers an extremely wide range of different BASIC commands and functions. The programmers have
always however been short of 'room' and hence the program is written for 'compactness' rather than 'speed'.

THE DISASSEMBLY

THE RESTART ROUTINES and THE TABLES

Disable the 'keyboard interrupt'.
+00 for start (but +FF for
'NEW").

Top of possible RAM.

THE 'START'
The maskable interrupt is disabled and the DE register pair set to hold the 'top of possible RAM'.
0000 START DI

XOR A

LD DE,+FFFF

JP 11CB,START/NEW

THE 'ERROR' RESTART

The error pointer is made to point to the position of the error.

0008 ERROR-1 LD HL,(CH-ADD)
LD (X-PTR),HL
JP 0053,ERROR-2

THE 'PRINT A CHARACTER' RESTART
The A register holds the code of the character that is to be printed.
0010 PRINT-A-1 JP 15F2,PRINT-A-2

DEFB +FF,+FF,+FF,+FF +FF

THE 'COLLECT CHARACTER' RESTART

Jump forward.

The address reached by the
interpreter is copied to the error
pointer before proceeding.

Jump forward immediately.
Unused locations.

The contents of the location currently addressed by CH-ADD are fetched. A return is made if the value represents a printable character,

otherwise CH-ADD is incremented and the tests repeated.
0018 GET-CHAR LD HL,(CH-ADD)
LD A,(HL)
TEST-CHAR CALL 007D,SKIP-OVER
RET NC

001C

THE 'COLLECT NEXT CHARACTER' RESTART

Fetch the value that is addressed
by CH-ADD.

Find out if the character is
printable. Return if it is so.

As a BASIC line is interpreted, this routine is called repeatedly to step along the line.

0020 NEXT-CHAR CALL 0074,CH-ADD+1

JR 001C,TEST-CHAR
DEFB +FF,+FF,+FF

THE 'CALCULATOR' RESTART

The floating point calculator is entered at 335B.

0028 FP-CALC JP 335B,CALCULATE
DEFB +FF,+FF,+FF +FF,+FF

THE 'MAKE BC SPACES' RESTART

CH-ADD needs to be incre-
mented.

Jump back to test the new
value.

Unused locations.

Jump forward immediately.
Unused locations.

This routine creates free locations in the work space. The number of locations is determined by the current contents of the BC register

pair.

0030 BC-SPACES PUSH BC
LD HL,(WORKSP)
PUSH HL
JpP 169E,RESERVE

THE 'MASKABLE INTERRUPT' ROUTINE

Save the 'number'.

Fetch the present address of the
start of the work space and save
that also before proceeding.

The real time clock is incremented and the keyboard scanned whenever a maskable interrupt occurs.

0038 MASK-INT PUSH AF
PUSH HL

LD HL,(FRAMES)

Save the current values held in
these registers.
The lower two bytes of the

INC HL

LD (FRAMES),HL

LD AH

OR L

JR NZ,0048,KEY-INT

INC (FRAMES-3)
0048 KEY-INT PUSH BC

PUSH DE

CALL 02BF,KEYBOARD

POP DE

POP BC

POP HL

POP AF

E

RET

THE 'ERROR-2' ROUTINE

frame counter are incremented
every 20 ms. (U.K.) The highest
byte of the frame counter is
only incremented when the
value of the lower two bytes

is zero.

Save the current values held

in these registers.

Now scan the keyboard.
Restore the values.

The maskable interrupt is en-
abled before returning.

The return address to the interpreter points to the 'DEFB' that signifies which error has occurred. This 'DEFB' is fetched and transferred
to ERR-NR. The machine stack is cleared before jumping forward to clear the calculator stack.

0053 ERROR-2 POP HL
LD L,(HL)

0055 ERROR-3 LD (ERR-NR),L
LD SP,(ERR-SP)
JP 16C5,SET-STK
DEFB +FF,+FF +FF,+FF
DEFB +FF,+FF,+FF

THE 'NON-MASKABLE INTERRUPT' ROUTINE

The address on the stack points
to the error code.

It is transferred to ERR-NR.
The machine is cleared before
exiting via SET-STK.

Unused locations.

This routine is not used in the standard Spectrum but the code allows for a system reset to occur following activation of the NMI line.
The system variable at 5CB0, named here NMIADD, has to have the value zero for the reset to occur.

0066 RESET PUSH AF
PUSH HL
LD HL,(NMIADD)
LD AH
OR L
JR NZ,0070,NO-RESET
JpP (HL)
0070 NO-RESET POP HL
POP AF
RETN

THE 'CH-ADD+1' SUBROUTINE

Save the current values held
in these registers.

The two bytes of NMIADD
must both be zero for the reset
to occur.

Note: This should have been
'JR Z'

Jump to START.

Restore the current values to
these registers and return.

The address held in CH-ADD is fetched, incremented and restored. The contents of the location now addressed by CH-ADD is fetched.
The entry points of TEMP-PTR1 and TEMP-PTR2 are used to set CH-ADD for a temporary period.

0074 CH-ADD+1 LD HL,(CH-ADD)
0077 TEMP-PTRL INC HL
0078 TEMP-PTR2 LD (CH-ADD),HL
LD A,(HL)
RET

THE 'SKIP-OVER' SUBROUTINE

Fetch the address.

Increment the pointer.

Set CH-ADD.

Fetch he addressed value and
then return.

The value brought to the subroutine in the A register is tested to see if it is printable. Various special codes lead to HL being

incremented once, or twice, and CH-ADD amended accordingly.

007D SKIP-OVER CP +21
RET NC
CP +0D
RET Z

CP +10

Return with the carry flag reset
if ordinary character code.
Return if the end of the line
has been reached.

Return with codes +00 to +0OF

RET C but with carry set.

CP +18 Return with codes +18 to +20
CCF again with carry set.
RET C
INC HL Skip-over once.
CP +16 Jump forward with codes +10
JR C,0090,SKIPS to +15 (INK to OVER).
INC HL Skip-over once more (AT &
TAB).

0090 SKIPS SCF Return with the carry flag set
LD (CH-ADD),HL and CH-ADD holding the
RET appropriate address.

THE TOKEN TABLE
All the tokens used by the Spectrum are expanded by reference to this table. The last code of each token is 'inverted' by having its bit 7
set.

0095 BF 52 4E C4 49 4E 4B 45 !
009D 59 A4 50 C9 46 CE 50 4F
00A5 49 4E D4 53 43 52 45 45
0OAD 4E A4 41 54 54 D2 41 D4
00B5 54 41 C2 56 41 4C A4 43
00BD 4F 44 C5 56 41 CC 4C 45
00C5 CE 53 49 CE 43 4F D3 54 !
00CD 41 CE 41 53 CE 41 43 D3
00D5 41 54 CE 4C CE 45 58 DO
00DD 49 4E D4 53 51 D2 53 47
00E5 CE 41 42 D3 50 45 45 CB !
00OED 49 CE 55 53 D2 53 54 52
00F5 A4 43 48 52 A4 4E 4F D4 !
00FD 42 49 CE 4F D2 41 4E C4
0105 3C BD 3E BD 3C BE 4C 49
010D 4E C5 54 48 45 CE 54 CF
0115 53 54 45 DO 44 45 46 20
011D 46 CE 43 41 D4 46 4F 52
0125 4D 41 D4 4D 4F 56 C5 45
012D 52 41 53 C5 4F 50 45 4E
0135 20 A3 43 4C 4F 53 45 20 !
013D A3 4D 45 52 47 C5 56 45 !
0145 52 49 46 D9 42 45 45 DO
014D 43 49 52 43 4C C5 49 4E
0155 CB 50 41 50 45 D2 46 4C !
015D 41 53 C8 42 52 49 47 48
0165 D4 49 4E 56 45 52 53 C5 !
016D 4F 56 45 D2 4F 55 D4 4C
0175 50 52 49 4E D4 4C 4C 49
017D 53 D4 53 54 4F DO 52 45
0185 41 C4 44 41 54 C1 52 45
018D 53 54 4F 52 C5 4E 45 D7
0195 42 4F 52 44 45 D2 43 4F
019D 4E 54 49 4E 55 C5 44 49
01A5 CD 52 45 CD 46 4F D2 47 !
01AD 4F 20 54 CF 47 4F 20 53
01B5 55 C2 49 4E 50 55 D4 4cC
01BD 4F 41 C4 4C 49 53 D4 4cC
01C5 45 D4 50 41 55 53 C5 4E
01CD 45 58 D4 50 4F 4B C5 50
01D5 52 49 4E D4 50 4C 4F D4
01DD 52 55 CE 53 41 56 C5 52
01E5 41 4E 44 4F 4D 49 5A C5
01ED 49 C6 43 4C D3 44 52 41
01F5 D7 43 4C 45 41 D2 52 45
01FD 54 55 52 CE 43 4F 50 D9

HHOHUHW<SHNWHHE®RP P ZAMH | HQZPZHZ 000200

nncoom@mWzZpPRECTHIEHEEEHOMUO<MHMEIZIVIEZOEHEDIEPOEETHZ=

H MO M

ToQEOIOWEHHAHNOEHE <SSO ABEZO0OHAERX Q0NnEWPEYR
o)

QAP NEFPOHOCHTYTOHOCHEBAHOHOEHWHETOOOOHUEBMAXW MO OUOZ2Z2OQ»AQHAH
(/;'—]D'JO

o]

Hww o

@)

—

o

TRHNZATDTNHZHIED»ZOHZ HK WD
Z =

N OHOETEHEHHEPE®RIDH Z WHE

caoOmzaHXAaPw

'T' L

HEHPOOIEHEBOCORZWn P NMWOHFPXROWMIE

THQUZzZz2AYoOoHAEEHODMHEBZ DM EHEOQOAQEHAYVZDnCaEAZ2PHEHE>»AYR
ZFJL“OU]H”U:DL_‘ZOZZUWD"—]ZW<U:"'UOF<-;UL_‘FJZD"'UEHOW(/JU)U)L_‘(/JZ<<’—]U)HU

THE KEY TABLES

There are six separate key tables. The final character code obtained depends on the particular key pressed and the 'mode' being used.

(a) The main key table - L mode and CAPS SHIFT.

0205 42 48 59 36 35 54 47 56 B H Y 6 5 T G V

020D 4E 4A 55 37 34 52 46 43 N J u 7 4 R F C

0215 4D 4B 49 38 33 45 44 58 M K I 8 3 E D X

021D OE 4C 4F 39 32 57 53 5A SYMBOL L 0 9 2 W s Z
SHIFT

0225 20 OD 50 30 31 51 41 SPACE ENTER P O 1 Q A

(b) Extended mode. Letter keys and unshifted

022C E3 C4 EO E4 READ BIN LPRINT DATA

0230 B4 BC BD BB TAN SGN ABS SOR

0234 AF BO Bl CO CODE VAL LEN USR

0238 A7 A6 BE AD PI INKEY$ PEEK TAB

023C B2 BA E5 A5 SIN INT RESTORE RND

0240 C2 E1 B3 B9 CHR$ LLIST cos EXP

0244 C1 B8 STRS LN

(c) Extended mode. Letter keys and either shift.

0246 7E DC DA 5C ~ BRIGHT PAPER \

024a B7 7B 7D D8 ATN { } CIRCLE

024E BF AE AA AB IN VALS SCREENS$ ATTR

0252 DD DE DF 7F INVERSE OVER ouT ©

0256 B5 D6 7C D5 ASN VERIFY | MERGE

025A 5D DB B6 D9] FLASH ACS INK

025E 5B D7 0C 07 [BEEP

(d) Control codes. Digit keys and CAPS SHIFT.

0260 0C 07 06 04 DELETE EDIT CAPS LOCK TRUE VIDEO

0264 05 08 0OA OB INV VIDEO Cursor left Cursor down Cursor up

0268 09 OF Cursor right GRAPHICS

(e) Symbol code. Letter keys and symbol shift.

026A E2 2A 3F CD STOP * ? STEP

026E C8 CC CB 5E >= TO THEN .

0272 AC 2D 2B 3D AT - + =

0276 2E 2C 3B 22 . ’ ; "

027A C7 3C C3 3E <= < NOT >

027E C5 2F C9 60 OR / <> £

0282 C6 3A AND :

(f) Extended mode. Digit keys and symbol shift.

0284 DO CE A8 CA FORMAT DEF FN FN LINE

0288 D3 D4 D1 D2 OPEN CLOSE MOVE ERASE

028C A9 CF POINT CAT

THE KEYBOARD ROUTINES
THE 'KEYBOARD SCANNING' SUBROUTINE

This very important subroutine is called by both the main keyboard subroutine and the INKEY$ routine (in SCANNING).
In all instances the E register is returned with a value in the range of +00 to +27, the value being different for each of the forty keys of

the keyboard, or the value +FF, the no-key.

The D register is returned with a value that indicates which single shift key is being pressed. If both shift keys are being pressed then
the D and E registers are returned with the values for the CAPS SHIFT and SYMBOL SHIFT keys respectively.

If no keys is being pressed then the DE register pair is returned holding +FFFF.

The zero flag is returned reset if more than two keys are being pressed, or neither key of a pair of keys is a shift key.

028E KEY-SCAN LD L,+2F
LD DE,+FFFF
LD BC,+FEFE

The initial key value for each
line will be +2F, +2E,...,+28.
(Eight lines.)

Initialise DE to 'no-key'.

C = port address, B = counter.

Now enter a loop. Eight passes are made with each pass having a different initial key value and scanning a different line of five keys.

(The first line is CAPS SHIFT, Z, X, C, V.)

0296 KEY-LINE IN A,(C)
CPL
AND +1F
JR Z,02AB,KEY-DONE
LD H,A
LD AL
029F KEY-3KEYS INC D
RET NZ
02A1 KEY-BITS SuUB +08
SRL H
JR NC,02A1,KEY-BITS
LD D,E
LD EA
JR NZ,029F KEY-3KEYS
02AB KEY-DONE DEC L
RLC B
JR C,0296,KEY-LINE
Four tests are now made.
LD A,D
RET Z

Read from the port specified.

A pressed key in the line will set
its respective bit (from bit O -
outer key, to bit 4 - inner key).
Jump forward if none of the

five keys in the line are being
pressed.

The key-bits go to the H register
whilst the initial key value is
fetched.

If three keys are being pressed
on the keyboard then the D
register will no longer hold +FF
- so return if this happens.
Repeatedly subtract '8' from

the preset key value until a
key-bit is found.

Copy any earlier key value to
the D register.

Pass the new key value to the
E register.

If there is a second, or possibly
a third, pressed key in this line
then jump back.

The line has been scanned so the
initial key value is reduced for
the next pass.

The counter is shifted and the
jump taken if there are still lines
to be scanned.

Accept any key value for a pair
of keys if the 'D' key is CAPS
SHIFT.

CP +19 Accept the key value for a pair

RET z of keys if the 'D' key is SYMBOL
SHIFT.

LD AE It is however possible for the 'E'

LD E,.D key of a pair to be SYMBOL

LD D,A SHIFT - so this has to be

CP +18 considered.

RET Return with the zero flag set if

it was SYMBOL SHIFT and
‘another key'; otherwise reset.

THE 'KEYBOARD' SUBROUTINE

This subroutine is called on every occasion that a maskable interrupt occurs. In normal operation this will happen once every 20 ms.
The purpose of this subroutine is to scan the keyboard and decode the key value. The code produced will, if the 'repeat' status allows it,
be passed to the system variable LAST-K. When a code is put into this system variable bit 5 of FLAGS is set to show that a 'new' key
has been pressed.

02BF KEYBOARD CALL 028E,KEY-SCAN
RET Nz

Fetch a key value in the DE
register pair but return immedi-
ately if the zero pair flag is reset.

A double system of 'KSTATE system variables' (KSTATEO - KSTATE 3 and KSTATE4 - KSTATE?) is used from now on.

The two sets allow for the detection of a new key being pressed (using one set) whilst still within the 'repeat period' of the previous key
to have been pressed (details in the other set).

A set will only become free to handle a new key if the key is held down for about 1/10 th. of a second. i.e. Five calls to KEYBOARD.

LD HL,KSTATEO Start with KSTATEQ.

02C6 K-ST-LOOP BIT 7,(HL) Jump forward if a 'set is free";
JR Nz,02D1,K-CH-SET i.e. KSTATEO/4 holds +FF.
INC HL However if the set is not free
DEC (HL) decrease its '5 call counter'
DEC HL and when it reaches zero signal
JR NZ,02D1,K-CH-SET the set as free.
LD (HL),+FF

After considering the first set change the pointer and consider the second set.

02D1 K-CH-SET LD AL Fetch the low byte of the
LD HL,+KSTATE4 address and jump back if the
CP L second set has still to be
JR NZ,02C6,K-ST-LOOP considered.

Return now if the key value indicates 'no-key' or a shift key only.

CALL 031E,K-TEST
RET NC

Make the necessary tests and
return if needed. Also change
the key value to a 'main code'.

A key stroke that is being repeated (held down) is now separated from a new key stroke.

LD HL,+KSTATEO Look first at KSTATEO.

CP (HL) Jump forward if the codes

JR Z,0310,K-REPEAT match - indicating a repeat.

EX DE,HL Save the address of KSTATEO.
LD HL,+KSTATE4 Now look at KSTATEA.

CP (HL) Jump forward if the codes

JR Z,0310,K-REPEAT match - indicating a repeat.

But a new key will not be accepted unless one of the sets of KSTATE system variables is 'free'.

BIT 7,(HL) Consider the second set.
JR NZ,02F1,K-NEW Jump forward if ‘free'.
EX DE,HL Now consider the first set.

BIT 7,(HL) Continue if the set is 'free' but
RET A exit from the KEYBOARD
subroutine if not.

The new key is to be accepted. But before the system variable LAST-K can be filled, the KSTATE system variables, of the set being
used, have to be initialised to handle any repeats and the key's code has to be decoded.

02F1 K-NEW LD E.A The code is passed to the
LD (HL),A E register and to KSTATEO0/4.
INC HL The '5 call counter' for this
LD (HL),+05 setisresetto '5'.
INC HL The third system variable of
LD A,(REPDEL) the set holds the REPDEL value
LD (HL),A (normally 0.7 secs.).
INC HL Point to KSTATE3/7.

The decoding of a 'main code' depends upon the present state of MODE, bit 3 of FLAGS and the 'shift byte'.

LD C,(MODE) Fetch MODE.

LD D,(FLAGS) Fetch FLAGS.

PUSH HL Save the pointer whilst the
CALL 0333,K-DECODE 'main code' is decoded.

POP HL

LD (HL),A The final code value is saved in

KSTATES/7; from where it is
collected in case of a repeat.

The next three instruction lines are common to the handling of both 'new keys' and 'repeat keys'.

0308 K-END LD (LAST-K),A Enter the final code value into
SET 5,(FLAGS) LAST-K and signal 'a new key'.
RET Finally return.

THE 'REPEATING KEY' SUBROUTINE
A key will 'repeat' on the first occasion after the delay period - REPDEL (normally 0.7 secs.) and on subsequent occasions after the
delay period - REPPER (normally 0.1 secs.).

0310 K-REPEAT INC HL Point to the '5 call counter'
LD (HL),+05 of the set being used and reset
itto'5".
INC HL Point to the third system vari-
DEC (HL) able - the REPDEL/REPPER
value, and decrement it.
RET NZ Exit from the KEYBOARD

subroutine if the delay period
has not passed.

LD A,(REPPER) However once it has passed the

LD (HL),A delay period for the next repeat
is to be REPPER.

INC HL The repeat has been accepted

LD A,(HL) so the final code value is fetched
from KSTATE3/7 and passed

JR 0308,K-END to K-END.

THE 'K-TEST' SUBROUTINE
The key value is tested and a return made if 'no-key' or 'shift-only"; otherwise the 'main code' for that key is found.

031E K-TEST LD B,D Copy the shift byte.
LD D,+00 Clear the D register for later.
LD AE Move the key number.
CP +27 Return now if the key was
RET NC 'CAPS SHIFT' only or 'no-key'.

CP +18 Jump forward unless the 'E'

JR NZ,032C,K-MAIN key was SYMBOL SHIFT.
BIT 7,B However accept SYMBOL SHIFT
RET Nz and another key; return with

SYMBOL SHIFT only.

The 'main code' is found by indexing into the main key table.

032C K-MAIN LD HL,+0205 The base address of the table.
ADD HL,DE Index into the table and fetch
LD A,(HL) the 'main code'.
SCF Signal 'valid keystroke'
RET before returning.

THE 'KEYBOARD DECODING' SUBROUTINE

This subroutine is entered with the 'main code' in the E register, the value of FLAGS in the D register, the value of MODE in the C
register and the 'shift byte' in the B register.

By considering these four values and referring, as necessary, to the six key tables a 'final code' is produced. This is returned in the A
register.

0333 K-DECODE LD AE Copy the 'main code'.
CP +3A Jump forward if a digit key is
JR C,0367,K-DIGIT being considered; also SPACE,
ENTER & both shifts.
DEC Cc Decrement the MODE value.
JP M,034F,K-KLC-LET Jump forward, as needed, for
JR Z,0341,K-E-LET modes 'K', 'L, 'C' & 'E'.

Only 'graphics' mode remains and the 'final code' for letter keys in graphics mode is computed from the 'main code'.

ADD A,+4F Add the offset.
RET Return with the ‘final code'.

Letter keys in extended mode are considered next.

0341 K-E-LET LD HL,+01EB The base address for table 'b'.
INC B Jump forward to use this table
JR Z,034A,K-LOOK-UP if neither shift key is being
pressed.
LD HL,+0205 Otherwise use the base address
for table ‘c'.

Key tables 'b-f' are all served by the following look-up routine. In all cases a 'final code' is found and returned.

034A K-LOOK-UP LD D,+00 Clear the D register.
ADD HL,DE Index the required table
LD A,(HL) and fetch the ‘final code'.
RET Then return.

Letter keys in 'K', 'L' or 'C' modes are now considered. But first the special SYMBOL SHIFT codes have to be dealt with.

034F K-KLC-LET LD HL,+0229 The base address for table ‘e’
BIT 0,B Jump back if using the SYMBOL
JR Z,034A,K-LOOK-UP SHIFT key and a letter key.

BIT 3,D Jump forward if currently in

JR Z,0364,K-TOKENS 'K' mode.

BIT 3,(FLAGS?2) If CAPS LOCK is set then

RET NZ return with the 'main code'

INC B Also return in the same manner
RET NZ if CAPS SHIFT is being pressed.
ADD A,+20 However if lower case codes are
RET required then +20 has to be

added to the 'main code' to give
the correct 'final code'.

The *final code' values for tokens are found by adding +A5 to the 'main code'.

0364 K-TOKENS ADD
RET

Next the digit keys; and SPACE, ENTER & both shifts; are considered.

0367 K-DIGIT CP
RET

DEC
JP
JR
LD
BIT
JR

CP
JR

A+AS5

+30
c

M,039D,K-KLC-DGT
NZ,0389,K-GRA-DGT

HL,+0254
5B
Z,034A,K-LOOK-UP

+38
NC,0382,K-8-&-9

Add the required offset and
return.

Proceed only with the digit keys.
i.e. Return with SPACE (+20),
ENTER (+0D) & both shifts
(+OE).

Now separate the digit keys into
three groups - according to the
mode.

Jump with 'K', 'L' & 'C' modes;
and also with 'G' mode.
Continue with 'E' mode.

The base address for table 'f'.
Use this table for SYMBOL
SHIFT & a digit key in

extended mode.

Jump forward with digit keys
'8"and '9'.

The digit keys '0' to '7" in extended mode are to give either a 'paper colour code' or an 'ink colour code' depending on the use of the

CAPS SHIFT.

SUB

INC
RET

ADD
RET

The digit keys '8' and '9' are to give 'BRIGHT' & 'FLASH' codes.

0382 K-8-&-9 SuUB
INC
RET

ADD
RET

+20

B
Z

A,+08

+36
B
z

A,+FE

Reduce the range +30 to +37
giving +10 to +17.

Return with this ‘paper colour
code' if the CAPS SHIFT is

not being used.

But if it is then the range is to
be +18 to +1F instead - indicat-
ing an 'ink colour code'.

+38 & +39 go to +02 & +03.
Return with these codes if CAPS
SHIFT is not being used. (These
are 'BRIGHT' codes.)

Subtract '2' is CAPS SHIFT is
being used; giving +00 & +01 (as
'FLASH' codes).

The digit keys in graphics mode are to give the block graphic characters (+80 to +8F), the GRAPHICS code (+0F) and the DELETE

code (+0C).

0389 K-GRA-DGT LD

XOR
RET

HL,+0230

+39
Z,034A,K-LOOK-UP
+30
Z,034A,K-LOOK-UP
+07

A,+80

B

Z

+OF

Finally consider the digit keys in 'K’, 'L' & 'C' modes.

039D K-KLC-DGT INC
RET

BIT
LD
JR

B
Z

5B
HL,+0230
NZ,034A,K-LOOK-UP

The base address of table 'd".
Use this table directly for
both digit key '9' that is to give
GRAPHICS, and digit key '0'
that is to give DELETE.

For keys '1' to '8' make the
range +80 to +87.

Return with a value from this
range if neither shift key is
being pressed.

But if 'shifted’ make the range
+88 to +8F.

Return directly if neither shift
key is being used. (Final codes
+30 to +39.)

Use table 'd' if the CAPS
SHIFT key is also being
pressed.

The codes for the various digit keys and SYMBOL SHIFT can now be found.

03B2

K-@-CHAR

SUB

RET

LD
RET
LD
RET

+10

+22
Z,03B2,K-@-CHAR
+20

NZ

A,+5F

A,+40

10

Reduce the range to give +20 to
+29.

Separate the '@' character
from the others.

The '-' character has also to be
separated.

Return now with the 'final
codes' +21, +23 to +29.

Give the '-' character a

code of +5F.

Give the '@’ character a code
of +40.

THE LOUDSPEAKER ROUTINES

The two subroutines in this section are the BEEPER subroutine, that actually controls the loudspeaker, and the BEEP command
routine.

The loudspeaker is activated by having D4 low during an OUT instruction that is using port '254'. When D4 is high in a similar situation
the loudspeaker is deactivated. A 'beep' can therefore be produced by regularly changing the level of D4.

Consider now the note 'middle C' which has the frequency 261.63 hz. In order to get this note the loudspeaker will have to be
alternately activated and deactivated every 1/523.26™. of a second. In the SPECTRUM the system clock is set to run at 3.5 mhz. and
the note of 'middle C' will require that the requisite OUT instruction be executed as close as possible to every 6,689 T states. This last
value, when reduced slightly for unavoidable overheads, represents the 'length of the timing loop' in the BEEPER subroutine.

THE 'BEEPER' SUBROUTINE

This subroutine is entered with the DE register pair holding the value 'f*t', where a note of given frequency 'f' is to have a duration of 't'
seconds, and the HL register pair holding a value equal to the number of T states in the 'timing loop' divided by '4".

i.e. For the note 'middle C' to be produced for one second DE holds +0105 (INT(261.3 * 1)) and HL holds +066A (derived from 6,689/4 -
30.125).

03B5 BEEPER DI Disable the interrupt for the
duration of a 'beep'.
LD AL Save L temporarily.
SRL L Each '1"in the L register is
SRL L to count '4' T states, but take

INT (L/4) and count '16' T
states instead.

CPL Go back to the original value

AND +03 in L and find how many were

LD CA lost by taking INT (L/4).

LD B,+00

LD IX,+03D1 The base address of the timing
loop.

ADD IX,BC Alter the length of the timing

loop. Use an earlier starting
point for each '1' lost by taking

INT (L/4).
LD A,(BORDCR) Fetch the present border
AND +38 colour and move it to bits
RRCA 2,1 & 0 of the A register.
RRCA
RRCA
OR +08 Ensure the MIC output is 'off'.

Now enter the sound generation loop. 'DE' complete passes are made, i.e. a pass for each cycle of the note.
The HL register holds the 'length of the timing loop' with '16' T states being used for each '1' in the L register and '1,024' T states for
each '1'in the H register.

03D1 BE-IX+3 NOP Add '4' T states for each
03D2 BE-IX+2 NOP earlier entry port
03D3 BE-IX+1 NOP that is used.
03D4 BE-I1X+0 INC B The values in the B & C registers
INC C will come from H & L registers
- see below.
03D6 BE-H&L-LP DEC C The 'timing loop'.
JR NZ,03D6,BE-H&L-LP i.e.'BC'*'4'T states.
LD C,+3F (But note that at the half-cycle
DEC B point - C will be equal to
JP NZ,03D6,BE-H&L-LP L+1")
The loudspeaker is now alternately activated and deactivated.
XOR +10 Flip bit 4.

11

ouTt (+FE),A Perform the OUT operation;
leaving the border unchanged.

LD B,H Reset the B register.
LD CA Save the A register.
BIT 4,A Jump if at the half-cycle
JR NZ,03F2,BE-AGAIN point.

After a full cycle the DE register pair is tested.

LD AD Jump forward if the last
OR E complete pass has been
JR Z,03D6,BE-END made already.

LD AC Fetch the saved value.

LD C.L Reset the C register.

DEC DE Decrease the pass counter.
JP (IX) Jump back to the required

starting location of the loop.

The parameters for the second half-cycle are set up.

03F2 BE-AGAIN LD C.L Reset the C register.
INC C Add '16' T states as this path
is shorter.
JP (IX) Jump back.

Upon completion of the 'beep’ the maskable interrupt has to be enabled.

03F6 BE-END El Enable interrupt.
RET Finally return.

THE 'BEEP' COMMAND ROUTINE

The subroutine is entered with two numbers on the calculator stack. The topmost
number represents the 'pitch’ of the note and the number underneath it represents the 'duration’.

03F8 BEEP RST 0028,FP-CALC The floating-point calculator is

used to manipulate the two values - t & P.

DEFB +31,duplicate t,P,P

DEFB +27,int t,P,P

DEFB +C0,st-mem-0 t,P,i (mem-0 holds i)

DEFB +03,subtract t,P (where p is the fractional
part of P)

DEFB +34,stk-data Stack the decimal value 'K'".

DEFB +EC,exponent+7C 0.0577622606 (which is a

DEFB +6C,+98,+1F,+F5 little below 12%(20.5)-1)

DEFB +04,multiply t,pK

DEFB +Al,stk-one t,pK,1

DEFB +0F,addition t,pK+1

DEFB +38,end-calc

Now perform several tests on |, the integer part of the 'pitch’.

LD HL,+5C92 This is 'mem-0-1st (MEMBOT).
LD A,(HL) Fetch the exponent of i.

AND A Give an error if i is not in the
JR NZ,046C,REPORT-B integral (short) form.

INC HL Copy the sign byte to the

LD C,(HL) C register.

INC HL Copy the low-byte to the

LD AB register.

RLA Again give report B if i does not
SBC AA satisfy the test:

CP C -128<=i<=+127

JR NZ,046C,REPORT-B

INC HL

CP (HL)

12

NZ,046C,REPORT-B
AB

A,+3C
P,0425,BE-I-OK
PO,046C,REPORT-B

Note: The range +70 to +127 will be rejected later on.

The correct frequency for the 'pitch' i can now be found.

0425
0427

BE-I-OK LD

BE-OCTAVE INC
SUB
JR
ADD
PUSH
LD

CALL
CALL

B,+FA

B

+0C
NC,0427,BE-OCTAVE
A,+0C

BC

HL,+046E

3406,LOC-MEM
33B4,STACK-NUM

Now the fractional part of the 'pitch' can be taken into consideration.

RST
DEFB
DEFB

0028,FP-CALC
+04,multiply
+38,end-calc

Fetch the low-byte and test
it further.

Accept -60<=i<=67.
Reject -128 to -61.

Start '6' octaves below middle C.
Repeatedly reduce i in order to
find the correct octave.

Ass back the last subtraction.
Save the octave number.

The base address of the 'semi-
tone table'.

Consider the table and pass the
'A th." value to the calculator
stack. (Call it C.)

t, pK+1, C
t, C(pK+1)

The final frequency f is found by modifying the 'last value' according to the octave number.

POP
ADD
LD

RST
DEFB
DEFB

Attention is now turned to the ‘duration’.

DEFB
DEFB
CALL
CP
JR

AF
A,(HL)
(HL),A

0028,FP-CALC
+CO0,st-mem-0
+02,delete

+31,duplicate
+38,end-calc
1E94,FIND-INT1
+0B
NC,046C,REPORT-B

Fetch the octave number.
Multiply the 'last value' by

'2 to the power of the octave
number'.

t, f

The frequency is put aside for
the moment in mem-0.

tt

The value 'INT t' must be in
the range +00 to +0A.

The number of complete cycles in the 'beep' is given by 'f*t' so this value is now found.

RST
DEFB
DEFB

The result is left on the calculator stack whilst the length of the ‘timing loop' required for the 'beep' is computed;

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

0028,FP-CALC
+EO0,get-mem-0
+04,multiply

+EO0,get-mem-0
+34,stk-data
+80,four bytes
+43,exponent +93
+55,+9F,+80,(+00)
+01,exchange
+05,division
+34,stk-data
+35,exponent +85
+71,(+00,+00,+00)
+03,subtract
+38,end-calc

13

t
t, f
f*t

*t

The value '3.5 * 10"6/8'
is formed on the top of
the calculator stack.
f*t, f, 437,500 (dec.)

f*t, 437,500, f

f*t, 437,500/f

ft, 437,500/f, 30.125 (dec.)
f+t, 437,500/f - 30.125

Note: The value '437,500/f' gives the 'half-cycle' length of the note and reducing it by '30.125" allows for '120.5' T states in which to
actually produce the note and adjust the counters etc.
The values can now be transferred to the required registers.

CALL 1E99,FIND-INT2 The 'timing loop' value is
compressed into the BC
PUSH BC register pair; and saved.

Note: If the timing loop value is too large then an error will occur (returning via ERROR-1); thereby excluding 'pitch' values of '+70 to
+127'.

CALL 1E99,FIND-INT2 The 'f*t' value is compressed
into the BC register pair.

POP HL Move the 'timing loop' value to
the HL register pair.

LD D,B Move the 'f*t' value to the

LD E,C DE register pair.

However before making the 'beep' test the value 'f*t'.

LD AD Return if 'f*t" has given the

OR E result of 'no cycles'

RET 4 required.

DEC DE Decrease the cycle number and
JP 03B5,BEEPER jump to the BEEPER subroutine

(making, at least, one pass).
Report B - integer out of range

046C REPORT-B RST 0008,ERROR-1 Call the error handling
DEFB +0A routine.

THE 'SEMI-TONE' TABLE
This table holds the frequencies of the twelve semi-tones in an octave.

frequency hz. note

046E DEFB +89,+02,+D0,+12,+86 261.63 C
DEFB +89,+0A,+97,+60,+75 277.18 C#
DEFB +89,+12,+D5,+17,+1F 293.66 D
DEFB +89,+1B,+90,+41,+02 311.12 D#
DEFB +89,+24,+D0,+53,+CA 329.63 E
DEFB +89,+2E,+9D,+36,+B1 349.23 F
DEFB +89,+38,+FF,+49,+3E 369.99 F#
DEFB +89,+43,+FF,+6A,+73 392 G
DEFB +89,+4F,+A7,+00,+54 415.30 G#
DEFB +89,+5C,+00,+00,+00 440 A
DEFB +89,+69,+14,+F6,+24 466.16 A#
DEFB +89,+76,+F1,+10,+05 493.88 B

THE 'PROGRAM NAME' SUBROUTINE (ZX81)
The following subroutine applies to the ZX81 and was not removed when the program was rewritten for the SPECTRUM.

04AA DEFB +CD,+FB,+24,+3A
DEFB +3B,+5C,+87,+FA
DEFB +8A,+1C,+E1,+D0
DEFB +E5,+CD,+F1,+2B
DEFB +62,+6B,+0D,+F8
DEFB +09,+CB,+FE,+C9

14

THE CASSETTE HANDLING ROUTINES

The 16K monitor program has an extensive set of routines for handling the cassette interface. In effect these routines form the SAVE.
LOAD, VERIFY & MERGE command routines.

The entry point to the routines is at SAVE-ETC (0605). However before this point are the subroutines concerned with the actual
SAVEing and LOADing (or VERIFYing) of bytes.

In all cases the bytes to be handled by these subroutines are described by the DE register pair holding the 'length' of the block, the IX
register pair holding the 'base address' and the A register holding +00 for a header block, or +FF for a program/data block.

THE 'SA-BYTES' SUBROUTINE
This subroutine is called to SAVE the header information (from 09BA) and later the actual program/data block (from 099E).

04C2 SA-BYTES LD HL,+053F Pre-load the machine stack with

PUSH HL the address - SA/LD-RET.

LD HL,+1F80 This constant will give a leader
of about 5 secs. for a 'header'.

BIT 7,A Jump forward if SAVEing a

JR Z,04D0,SA-FLAG header.

LD HL,+0C98 This constant will give a leader
of about 2 secs. for a program/
data block.

04D0 SA-FLAG EX AF.AF The flag is saved.

INC DE The ‘length’ is incremented

DEC IX and the 'base address' reduced
to allow for the flag.

DI The maskable interrupt is
disabled during the SAVE.

LD A,+02 Signal 'MIC on' and border to
be RED.

LD B,A Give a value to B.

A loop is now entered to create the pulses of the leader. Both the 'MIC on' and the 'MIC off' pulses are 2,168 T states in length. The
colour of the border changes from RED to CYAN with each 'edge'.

Note:

04D8

SA-LEADER DJNZ 04D8,SA-LEADER

An 'edge’ will be a transition either from 'on' to 'off', or from 'off' to 'on'.

The main timing period.

ouT (+FE),A MIC on/off, border RED/CYAN,

XOR +0F on each pass.

LD B,+A4 The main timing constant.

DEC L Decrease the low counter.

JR NZ,04D8,SA-LEADER Jump back for another pulse.

DEC B Allow for the longer path
(-reduce by 13 T states).

DEC H Decrease the high counter.

JP P,04D8,SA-LEADER Jump back for another pulse

A sync pulse is now sent.

until completion of the leader.

LD B,+2F

04EA SA-SYNC-1 DJINZ 04EA,SA-SYNC-1 MIC off for 667 T states from
'OUT to OUT".

ouT (+FE),A MIC on and RED.

LD A,+0D Signal 'MIC off & CYAN'.

LD B,+37 MIC on for 735 T States from
04F2 SA-SYNC-2 DJINZ 04F2,SA-SYNC-2 'OUT to OUT".

ouT (+FE),A Now MIC off & border CYAN.

The header v. program/data flag will be the first byte to be SAVEd.

15

LD BC,+3BOE +3B is a timing constant; +0E
signals 'MIC off & YELLOW".

EX AFAF Fetch the flag and pass it to the

LD LA L register for 'sending'.

JP 0507,SA-START Jump forward into the SAVEing
loop.

The byte SAVEIng loop is now entered. The first byte to be SAVEd is the flag; this is followed by the actual data byte and the final byte
sent is the parity byte that is built up by considering the values of all the earlier bytes.

O4FE SA-LOOP LD AD The 'length' counter is tested
OR E and the jump taken when it
JR Z,050E,SA-PARITY has reached zero.
LD L,(IX+00) Fetch the next byte that is to

be SAVEd.

0505 SA-LOOP-P LD AH Fetch the current 'parity'.
XOR L Include the present byte.

0507 SA-START LD H,A Restore the 'parity’. Note that

on entry here the 'flag' value
initialises 'parity'.

LD A,+01 Signal 'MIC on & BLUE".

SCF Set the carry flag. This will act
as a 'marker for the 8 bits of a
byte.

JP 0525,SA-8-BITS Jump forward.

When it is time to send the 'parity’ byte then it is transferred to the L register for SAVEing.

050E SA-PARITY LD L,H Get final 'parity’ value.
JR 0505,SA-LOOP-P Jump back.

The following inner loop produces the actual pulses. The loop is entered at SA-BIT-1 with the type of the bit to be SAVEd indicated by
the carry flag. Two passes of the loop are made for each bit thereby making an 'off pulse’ and an ‘on pulse'. The pulses for a reset bit
are shorter by 855 T states.

0511 SA-BIT-2 LD AC Come here on the second pass
and fetch 'MIC off & YELLOW'.
BIT 7,B Set the zero flag to show
'second pass'.
0514 SA-BIT-1 DJINZ 0514,SA-BIT-1 The main timing loop; always
801 T states on a 2nd. pass.
JR NC,051C,SA-OUT Jump, taking the shorter path, if
SAVEinga'0".
LD B,+42 However if SAVEing a '1' then
051A SA-SET DJINZ 051A,SA-SET add 855 T states.
051C SA-OUT ouT (+FE),A On the 1st. pass '‘MIC on &

BLUE' and on the 2nd. pass
'MIC off & YELLOW'.

LD B,+3E Set the timing constant for
the second pass.
JR NZ,0511,SA-BIT-2 Jump back at the end of the
DEC B first pass; otherwise reclaim
13 T states.
XOR A Clear the carry flag and set
INC A A to hold +01 (MIC on & BLUE}
before continuing into the
'8 bit loop'.

The '8 bit loop' is entered initially with the whole byte in the L register and the carry flag set. However it is re-entered after each bit has
been SAVEd until the point is reached when the 'marker' passes to the carry flag leaving the L register empty.

0525 SA-8-BITS RL L Move bit 7 to the carry and the
'marker’ leftwards.

16

JpP NZ,0514,SA-BIT-1
DEC DE

INC IX

LD B,+31

LD A+TF

IN A,(+FE)

RRA

RET NC

LD AD

INC A

JP NZ,04FE,SA-LOOP
LD B,+3B

053C SA-DELAY DJINZ
RET

053C,SA-DELAY

SAVE the bit unless finished
with the byte.

Decrease the 'counter'.
Advance the 'base address'.
Set the timing constant for the
first bit of the next byte.
Return (to SA/LD-RET) if the
BREAK key is being pressed.

Otherwise test the ‘counter

and jump back even if it has
reached zero (so as to send the
'parity’ byte).

Exit when the 'counter

reaches +FFFF. But first

give a short delay.

Note: A reset bit will give a 'MIC off' pulse of 855 T states followed by a 'MIC on' pulse of 855 T states. Whereas a Set bit will give
pulses of exactly twice as long. Note also that there are no gaps either between the sync pulse and the first bit of the flag, or between

bytes.

THE 'SA/LD-RET' SUBROUTINE
This subroutine is common to both SAVEing and LOADing.

The border is set to its original colour and the BREAK key tested for a last time.

053F SA/LD-RET PUSH AF
LD A,(BORDCR)
AND +38
RRCA
RRCA
RRCA
ouT (+FE),A
LD A+TF
IN A,(+FE)
RRA
El
JR C,0554,SA/LD-END

Report D - BREAK-CONT repeats

0552 REPORT-D RST 0008,ERROR-I
DEFB +0C

Continue here.

0554 SA/LD-END POP AF

RET

THE 'LD-BYTES' SUBROUTINE

Save the carry flag. (It is reset
after a LOADing error.)

Fetch the original border colour
from its system variable.

Move the border colour

to bits 2, 1& 0.

Set the border to its original
colour.

Read the BREAK key for a
last time.

Enable the maskable interrupt.
Jump unless a break is to be
made.

Call the error handling
routine.

Retrieve the carry flag.
Return to the calling routine.

This subroutine is called to LOAD the header information (from 07BE) and later LOAD, or VERIFY, an actual block of data (from 0802).

0556 LD-BYTES INC D
EX AFAF
DEC D

This resets the zero flag. (D
cannot hold +FF.)

The A register holds +00 for a
header and +FF for a block of
data.

The carry flag is reset for
VERIFYing and set for
LOADiINg.

Restore D to its original value.

DI The maskable interrupt is now

disabled.
LD A,+OF The border is made WHITE.
ouT (+FE),A
LD HL,+053F Preload the machine stack
PUSH HL with the address - SA/LD-RET.
IN A,(+FE) Make an initial read of port ‘254"
RRA Rotate the byte obtained but
AND +20 keep only the EAR bit,
OR +02 Signal 'RED' border.
LD CA Store the value in the C register. -
(+22 for 'off' and +02 for 'on’
- the present EAR state.)
CP A Set the zero flag.

The first stage of reading a tape involves showing that a pulsing signal actually exist (i.e. 'On/off' or 'off/on' edges.)

056B LD-BREAK RET NZ Return if the BREAK key is
being pressed.
056C LD-START CALL O5E7,LD-EDGE-1 Return with the carry flag reset
JR NC,056B,LD-BREAK if there is no 'edge’ within

approx. 14,000 T states. But if
an 'edge' is found the border
will go CYAN.

The next stage involves waiting a while and then showing that the signal is still pulsing.

LD HL,+0415 The length of this waiting
0574 LD-WAIT DJINZ 0574,LD-WAIT period will be almost one

DEC HL second in duration.

LD AH

OR L

JR NZ,0574,LD-WAIT

CALL 05E3,LD-EDGE-2 Continue only if two edges are

JR NC,056B,LD-BREAK found within the allowed time

period.

Now accept only a 'leader signal'.

0580 LD-LEADER LD B,+9C The timing constant,

CALL 05E3,LD-EDGE-2 Continue only if two edges are

JR NC,056B,LD-BREAK found within the allowed time
period.

LD A,+C6 However the edges must have

CP B been found within about

JR NC,056C,LD-START 3,000 T states of each other

INC H Count the pair of edges in the H

JR NZ,0580,LD-LEADER register until '256' pairs have
been found.

After the leader come the 'off' and 'on' part's of the sync pulse.

058F LD-SYNC LD B,+9C The timing constant.
CALL 05E7,LD-EDGE-1 Every edge is considered until
JR NC,056B,LD-BREAK two edges are found close
LD AB together - these will be the
CP +D4 start and finishing edges of
JR NC,058F,LD-SYNC the 'off' sync pulse.
CALL 05E7,LD-EDGE-1 The finishing edge of the
RET NC ‘on' pulse must exist.

(Return carry flag reset.)
The bytes of the header or the program/data block can now be LOADed or VERIFied. But the first byte is the type flag.

LD AC The border colours from now
XOR +03 on will be BLUE & YELLOW.

18

LD CA

LD H,+00

LD B,+B0

JR 05C8,LD-MARKER

Initialise the ‘parity matching'
byte to zero.

Set the timing constant for the
flag byte.

Jump forward into the byte
LOADING loop.

The byte LOADIng loop is used to fetch the bytes one at a time. The flag byte is first. This is followed by the data bytes and the last byte

is the 'parity’ byte.

05A9 LD-LOOP EX AFAF
JR NZ,05B3,LD-FLAG
JR NC,05BD,LD-VERIFY
LD (IX+00),L
JR 05C2,LD-NEXT
05B3 LD-FLAG RL C
XOR L
RET NZ
LD AC
RRA
LD CA
INC DE
JR 05CA,LD-DEC

Fetch the flags.

Jump forward only when
handling the first byte.

Jump forward if VERIFYing a
tape.

Make the actual LOAD when
required.

Jump forward to LOAD the
next byte.

Keep the carry flag in a safe
place temporarily.

Return now if the type flag does
not match the first byte on the
tape. (Carry flag reset.)
Restore the carry flag now.

Increase the counter to
compensate for its 'decrease’
after the jump.

If a data block is being verified then the freshly loaded byte is tested against the original byte.

05BD LD-VERIFY LD A,(1X+00)
XOR L
RET NZ

A new byte can now be collected from the tape.

05C2 LD-NEXT INC IX
05C4 LD-DEC DEC DE
EX AFAF
LD B,+B2
05C8 LD-MARKER LD L,+01

The 'LD-8-BITS' loop is used to build up a byte in the L register.

05CA LD-8-BITS CALL O5E3,LD-EDGE-2
RET NC
LD A,+C5
CP B
RL L
LD B,+B0
JP NC,05CA,LD-8-BITS

The 'parity matching' byte has to be updated with each new byte.

19

Fetch the original byte.

Match it against the new byte.
Return if 'no match'. (Carry
flag reset.)

Increase the 'destination'.
Decrease the ‘counter'.

Save the flags.

Set the timing constant.

Clear the 'object’ register apar